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we have that E = O (If = O) in any subregion of Q implies

H = O (J3 = O) in the same subregion. Consequently, E = 1? = O

where w EO1 (r) or w pa I (r) are strictly positive. Since in a lossy

dielectric &aI (T) and p. I (T) cannot be both zero quantities we obtain

E= H= Oin!20. (16)

However, (11) does not provide any information about E or H in

Q – Q., where the dielectric is lossless. Consequently, the following

question can be raised is it possible to have a nonzero field in Q – !2.

The answer is no, as proved by Miiller [1] (Theorem 34).

In fact, in Q – Qa the dielectric is linear and homogeneous,

and, as no jump discontinuity in electrical properties is possible,

E, H, V x E, and V x H are continuous. Moreover, E and H satisfy

V x E = –jtipuH

V x H =jwEuE (17)

and, by using (16) and the tangential continuity of E and If across

dielectric interfaces

nxE=O

}
on S.S.

nxH=O
(18)

Then ([1], theorem 34) E and H vanish identically in Q – Q, i.e.,

E= H= Oin W–-flo. (19)

Finally, (16) and (19) imply

E= H= Oin Q (20)

and the uniqueness of the solution is proved for the present particular

case.

Note that !& cannot collapse to a point, line or surface; it must be

a three~imensional (3-D) domain bounded by a regular surface.

III. CONCLUSION

A generalization of the standard uniqueness theorem for time-

harmonic electromagnetic fields has been presented and proved. In

particular, it has been shown that a linear, lossless, and homogeneous

dielectric can be part of the domain of interest. It can be useful to

know that, even in this case, the boundary value problem defined

by specifying the tangential components of the electric field over the

boundary (or the tangential components of the magnetic field over

the boundary, or the former components over part of the boundary

and the latter components over the rest of the boundary) has a unique

solution. However, it will be important to complete this generalization

by assuming the linear and lossless dielectric (which is only part

of the domain) to be inhomogeneous and even to present jump

discontinuities.
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Measurement of Simple Resonant Equivalent

Circuits for Microstrip Antennas

Steven J. Weiss and Walter K. Kahn

Abstract-This paper presents a procedure which can be used to model

the inpnt admittance of a probe-fed microstrip antenna using simple
circuit components. The valnes of the components are extracted from

experimental data and represent the antenna about any resonant mode.

A good circuit description of the antenna can greatly facilitate system

analysis.

I. INTRODUCTION

The cavity model has been of great value over the years lending

practical insight into the operation of microstrip antennas. Using this

model, the electromagnetic field between the patch and ground plane

of the antenna (the internal field) is assumed to closely resemble

the field which would be maintained by a cavity resonator having

magnetic walls on the perimeter and the same electric walls as the

antenna on the top and bottom [1 ]–[2]. The resonant modes are

dependent on the geometty of the patch. This cavity-like behavior

of the internal field(s) suggests that the antennas may be amenable

to proven techniques, developed over the years, which are used to

characterize the input admittance of cavity resonators.

This paper will develop a procedure by which measured input ad-

mittance data may be transformed to a circle of constant conductance.

After this transformation is performed, it is a simple matter to realize

a resonant circuit which describes the transformed data points. Since

the transformation itself can be accomplished using circuit elements,

a complete circuit description of the antenna’s input admittance is

obtained.

II. TRANSFORMATION OF THE DATA

Fig. 1 presents measured admittance data obtained from a probe-

fed microstrip antenna using a Hewlett Packard 8720A network

analyzer. The circular shape of the data is characteristic of these

antennas and not dependent on the geometry of the patch [2]. The

center of the circle makes an angle with the horizontal axis of the

Smith chart designated by “20.”

This analysis requires a transformation of the data to a circle of

constant conductance. Such a transformation is physically realized

using a length of transmission line (for rotation) and an attenuator.

That is, the data may be rotated to a position symmetric about the

horizontal axis of the Smith chart from the position shown in Fig. 1

if the angle 8 is known. This data, symmetric about the horizontal

axis, can then be viewed as originating from a circle of constant

conductance attenuated by “2G”. Accordingly, the transformation of

the reflection coefficient data from a circle of constant conductance to

a position such as that shown in Fig. 1 is realized from the relation:

f’(ti)&ta = e–~zee–za r(w)con,,an, .on~uc,ance .,,cle (1)

The values of 19and a are determined from a knowledge of the center

and radius of the measured data circle.
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Fig. 1. A typicat measured admittance locus of a probe-fed microstrip
antenna.

Fig. 2. The loaded input admittance of a tank circuit fed by transmission line.

+ri ~=rr+ jr,

B = -( Go+ Gre. )

/ E
.“ r,

B = +( Go+ Gre. )

Fig. 3. The location of the Q-specified susceptance values on tbe Smith
chart.

III. EQUIVALENT CIRCUIT OF THE TRANSFORMED DATA

The admittance of a resonant circuit consisting of a parallel resistor,

capacitor, and inductor lies on a circle of constant conductance. Such

a circuit has the negative components of its susceptance mapping to

the upper half-plane of the (admittance) Smith chart and positive

components mapping to the lower half-plane. As the excitation

frequency of the resonant circuit increases, the value of the admittance

traverses the constant conductance circle in a clockwise manner.

Resonance occurs when the value of the susceptance becomes zero.

-2a
e

( 8.686a) dB

attenuator
o I

Fig. 4. Equivalent circuit from the measured admittance of a microstrip
antenna.

(Pp ,$p)

a b

Fig. 5. Geometry of the annular sector antennas.

TABLE I
ANULAR POSITION, @p, FORTHE ANNULAR SECTORANTENNAS

sr. d (roils) ~ (degrees)

2.33 31 38.6
2.33 62 39.1
2,33 125 39.0
4.5 25 38.0

4.5 50 39.0

4.5 100 40.7
6 25 39.0
6 50 38.3
6 100 40.4

10.8 25 36.1
10.8 75 41.4

The measured circularly-shaped admittance data of a microstrip

antenna exhibits a similar behavior. It will now be shown that the

resonant circuit adequately represents the transformed data points

over a range of frequencies about resonance. The remaining task

is to specify the component values of the resonant circuit. Since the

derivation of these values is covered in the literature [3]–[4], only a

brief overview of the procedure will be presented.

Consider the circuit shown in Fig. 2. The input admittance of the

generator is here considered to be the same as the characteristic

conductance of the connecting transmission line, Go. The input

admittance to the circuit (normalized such that G. = 1) is written as:

‘iOaded=GO+Gres+’
Defining:

(2)

(3)
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TABLE 11
MEASURED VALUES OF Q

d (mik+ &~ Q unloaded Q external Qloaded

31 2.33 125 129 62

62 2.33 77 58 33

125 2.33 36 61 24
25 4.5 159 190 83

50 4.5 134 126 65

100 4.5 80 137 51

25 6 164 313 104

50 6 165 158 77

100 6 108 108 53

25 10.8 189 176 88

75 10.8 185 372 124

TABLE III
CALCULATED RESONANT CIRCUIT VALUES FOR FIG, 4

d (lllih) &r L [PH) C (pF) R.,, (ohms)
31 2.33 22.7 150.7 48.3
62 2.33 50.2 69.1 65.4
125 2.33 49.6 73.4 30.4
25 4.5 21.5 296.4 42.7
50 4.5 30.9 202.2 51.6
100 4.5 28.8 221.8 28.4
25 6 15.4 556.7 27.6
50 6 29.9 281.2 53.8
100 6 43.1 197.8 50
25 10.8 34.4 420.6 53.3
75 10.8 16.7 896.5 25.6

TABLE IV
CALCULATED PHASE SHIFT AND ATTENUATION VALUES FOR FIG, 4

d (roils) &~ 2 El (Degrees) a (Napiers)

31 2.33 15.3 0.013

62 2.33 32.8 0.0141

125 2.33 64.4 0.0261

25 4.5 6.29

50

0.0164

4.5 18.5 0.0123

100 4.5 37.1 0.0166

25 6 7.6 0.0157

50 6 16.5 0.0111

100 6 34.6 0.0158

25 10.8 4.5 0.0109,
I 75 I 10.8 I 18~ n nrw I

respectively, (2) is written as

fioaded= Go+ G,.. +.& ((w – L4.@)(LJ +W.@)

Wwo )
For small changes in frequency (4) simplifies using

Au= (w - WO) and 2W w (w + WO).

Therefore:

()2Aw
ilOa&d ~ 6. + (%,s + j% —

Wo “

Equation (6) may be written in the following three forms:

(5)

(6)

Correspondingly, three different values of “Q” may be defined

(9)

A

Qkxided = ~ = ~ :G

o re,

Q.rdoaded = % = &

,.s

Qexternal = ~ = $.

0

(lo)

(11)

(12)

(7)
The respective values of the radian frequency deviation Aw are

defined by the requirement that when (10)–(12) are substituted into

(8) (7)-(9), respectively, the real and imaginary components inside the

square-bracketed quantities are of equal magnitudes. The values of
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the susceptance forthe radian frequency deviations become

&loaded‘+( Go+ Gres) (13)

&nlOa&d =+G,,. (14)

I%xte,nal=+ Go. (15)

The susceptances specified in (13) to (15), mapped onto the Smith

chart, fall on the correspondingly labeled curves shown in Fig. 3.

As seen in Fig. 3,the transformed data, coinciding with acircleof

constant conductance, intercepts each of these lines once. Since each

data point has a frequency associated with it, the values of Q defined

in (10) to (12) may be determined from their frequency deviations.

The resonant frequency is taken from the data point closest to the

value of ~ = O. Since the data is lying on a circle of constant

conductance, the value of G,., is determined directly. The value of

Go will depend ontheinput impedances of theinstimentation used

tomeasure the data. Appropriate use of (10)–(12) and(3) will allow

determination of ~ and ~:

G.+&.)Q]..d.d ~=@=( 1

Wo (do + d,e,)WoQlcy&d

(16)

~ = Gres Q.nload.d
L=

1

Wo GresWQ.nloaded

(17)

(18)

The value of L and C may differ slightly depending on which

equation is used. Absolute values are obtained by dividing ~ by

Go and multiplying C by Go. Once the vahtes of G,.s, L, and C are

known, all of the component values of Fig. 2 are fully determined.

Fig. 4 illustrates the final equivalent circuit characterizing the input

admittance of the microstrip antenna.

IV. APPLICATION

This procedure was used to evaluate a

antennas which were fabricated having the

variety of microstrip

shape of an annular

sector, Fig. 5. In Fig. 5 the inner radius “a” is given a length of

0.600 inches and the outer radius “b” a length of 1.200 inches.

These values held for all of the antennas fabricated for experimental

analysis. All of the annular sector antennas had angular spans of 90°

with pP = 0.900 inches. The dielectric material was procured from

Rogers Corporation. Four different materials were used: RT 5870

(G = 2.33), TMM 4 (cT = 4.5), TMM 6 (E, = 6.0), and RT tjoIO

(s. = 10.8).

The dielectric constants for the materials, substrate thicknesses “d,”

and probe positions for the various antennas are given in Table I.

Using the analysis outlined in this paper, measured values of Q

were obtfained for each antenna, Table II. The measured values of

Q are in good agreement with values obtained by us using other

measurement techniques. The values of the components for the

resonant circuit were then found using data Table II and (16) to (18).

The absolute values of the circuit parameters of Fig. 4 are given in

Table III. The values of the phase shift and the attenuation are given

in Table IV.

V. CONCLUSION

This paper adapts some experimental techniques originally devel-

oped to model the admittance of cavity resonators and applies them

to microsttip antennas. The application requires a transformation

of the data to a constant conductance circle which is physically

realized using a length of transmission line and an attenuator. The

admittance calculated from the equivalent circuit was found to closely

match the measured data verifying the model within the range of

frequencies for which the various values of Q were measured.

The equivalent circuit demonstrates that simple and accurate mod-

els of these antennas may be easily constructed. The equivalent

circuits can prove quite valuable when computer simulations are

required.
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