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we have that £ = 0 (H = 0) in any subregion of ) implies
H = 0(FE = 0) in the same subregion. Consequently, E = H = 0
where we,r(r) or wper(r) are strictly positive. Since in a lossy
dielectric £,7(r) and u,7(r) cannot be both zero quantities we obtain

E=H=0inQ,. (16)

However, (11) does not provide any information about F or H in
2 —€),, where the dielectric is lossless. Consequently, the following
question can be raised: is it possible to have a nonzero field in 2 Q.
The answer is no, as proved by Miiller [1] (Theorem 34).

In fact, in 2 — Q, the dielectric is linear and homogeneous,
and, as no jump discontinuity in electrical properties is possible,
E,H,VxE, and V x H are continuous. Moreover, E and H satisfy

VXE=-jwu,H

V x H = jwe, B 17)

and, by using (16) and the tangential continuvity of E and H across
dielectric interfaces
nxE=0 } on S..

nx H=0 (18)

Then ([1], theorem 34) E and H vanish identically in Q2 —£),, i.e.,

E=H=0inQ-Q,. 19)

Finally, (16) and (19) imply

E=H=0in0 (20)

and the uniqueness of the solution is proved for the present particular
case.

Note that €2, cannot collapse to a point, line or surface; it must be
a three—dimensional (3-D) domain bounded by a regular surface.

III. CONCLUSION
A generalization of the standard uniqueness theorem for time-
harmonic electromagnetic fields has been presented and proved. In
particular, it has been shown that a linear, lossless, and homogeneous

dielectric can be part of the domain of interest. It can be useful to -

know that, even in this case, the boundary value problem defined
by specifying the tangential components of the electric field over the
boundary (or the tangential components of the magnetic field over
the boundary, or the former components over part of the boundary
and the latter components over the rest of the boundary) has a unique
solution. However, it will be important to complete this generalization
by assuming the linear and lossless dielectric (which is only part
of the domain) to be inhomogeneous and even to present jump
discontinuities.
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Measurement of Simple Resonant Equivalent
Circuits for Microstrip Antennas

Steven J. Weiss and Walter K. Kahn

Abstract—This paper presents a procedure which can be used to model
the input admittance of a probe-fed microstrip antenna using simple
circuit components. The values of the components are extracted from
experimental data and represent the antenna about any resonant mode.
A good circuit description of the antenna can greatly facilitate system
analysis.

I. INTRODUCTION

The cavity model has been of great value over the years lending
practical insight into the operation of microstrip antennas. Using this
model, the electromagnetic field between the patch and ground plane
of the antenna (the internal field) is assumed to closely resemble
the field which would be maintained by a cavity resonator having
magnetic walls on the perimeter and the same electric walls as the
antenna on the top and bottom [1]-[2]. The resonant modes are
dependent on the geometry of the patch. This cavity-like behavior
of the internal field(s) suggests that the antennas may be amenable
to proven techniques, developed over the years, which are used to
characterize the input admittance of cavity resonators.

This paper will develop a procedure by which measured input ad-
mittance data may be transformed to a circle of constant conductance.
After this transformation is performed, it is a simple matter to realize
a resonant circuit which describes the transformed data points. Since
the transformation itself can be accomplished using circuit elements,
a complete circuit description of the antenna’s input admittance is
obtained.

II. TRANSFORMATION OF THE DATA

Fig. 1 presents measured admittance data obtained from a probe-
fed microstrip antenna using a Hewlett Packard 8720A network
analyzer. The circular shape of the data is characteristic of these
antennas and not dependent on the geometry of the patch [2]. The
center of the circle makes an angle with the horizontal axis of the
Smith chart designated by “26.”

This analysis requires a transformation of the data to a circle of
constant conductance. Such a transformation is physically realized
using a length of transmission line (for rotation) and an attenuator.
That is, the data may be rotated to a position symmetric about the
horizontal axis of the Smith chart from the position shown in Fig. 1
if the angle # is known. This data, symmetric about the horizontal
axis, can then be viewed as originating from a circle of constant
conductance attenuated by “2a”. Accordingly, the transformation of
the reflection coefficient data from a circle of constant conductance to
a position such as that shown in Fig. 1 is realized from the relation:

—328 —2
F(w)data =e e CY]--\(“‘J)conz;tant; conductance circle (1)

The values of § and « are determined from a knowledge of the center
and radius of the measured data circle.
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Fig. 1.
antenna.

A typical measured admittance locus of a probe-fed microstrip
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Fig. 2. The loaded input adrﬁittance of a tank circuit fed by transmission line.
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Fig. 3. The location of the @-specified susceptance values on the Smith
chart.

III. EQUIVALENT CIRCUIT OF THE TRANSFORMED DATA

The admittance of a resonant circuit consisting of a parallel resistor,
capacitor, and inductor lies on a circle of constant conductance. Such
a circuit has the negative components of its susceptance mapping to
the upper half-plane of the (admittance) Smith chart and positive
components mapping to the lower half-plane. As the excitation
frequency of the resonant circuit increases, the value of the admittance
traverses the constant conductance circle in a clockwise manner.
Resonance occurs when the value of the susceptance becomes zero.
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Fig. 4. Equivalent circuit from the measured admittance of a microstrip
antenna.

a b
Fig. 5. Geometry of the annular sector antennas.
TABLE 1

ANULAR POSITION, ¢p, FOR THE ANNULAR SECTOR ANTENNAS
£r d_(mils) ¢p, (degrees)

2.33 31 38.6

2.33 62 39.1

2.33 125 39.0

4.5 25 38.0

4.5 50 39.0

4.5 100 40.7

6 25 39.0

6 50 38.3

6 100 40.4

10.8 25 36.1

10.8 75 41.4

The measured circularly-shaped admittance data of a microstrip
antenna exhibits a similar behavior. It will now be shown that the
resonant circuit adequately represents the transformed data points
over a range of frequencies about resonance. The remaining task
is to specify the component values of the resonant circuit. Since the
derivation of these values is covered in the literature [3]-[4], only a
brief overview of the procedure will be presented.

Consider the circuit shown in Fig. 2. The input admittance of the
generator is here considered to be the same as the characteristic
conductance of the connecting transmission line, G,. The input
admittance to the circuit (normalized such that G, = 1) is written as:

. _ oA 1
Yioaded = Go + Gires + J <(«UC - —A> . )
wil
Defining:
; ¢ 1
Y. = — and w, = — 3)
L VLC
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TABLE 1II
MEASURED VALUES OF @
d (mils) Er Q unloaded Q external Q loaded
31 2.33 125 129 62
62 2.33 77 58 33
125 2.33 36 61 24
25 4.5 159 190 83
50 4.5 134 - 126 65
100 4.5 80 137 51
25 6 164 313 104
50 6 165 158 77
100 6 108 108 53
25 10.8 189 176 88
75 10.8 185 372 124
TABLE 111
CALCULATED RESONANT CIRCUIT VALUES FOR FIG. 4
d (mils) €r L (pH) C (pF) Rres (Ohms)
31 2.33 22.7 150.7 48.3
62 2.33 50.2 69.1 65.4
125 2.33 49.6 73.4 30.4
25 4.5 21.5 296.4 42.7
S0 4.5 309 202.2 51.6
100 4.5 28.8 221.8 284
25 6 15.4 556.7 27.6
30 6 29.9 281.2 53.8
100 6 43.1 197.8 50
25 10.8 34.4 420.6 53.3
75 10.8 16.7 896.5 25.6
TABLE IV
CALCULATED PHASE SHIFT AND ATTENUATION VALUES FOR FiG. 4
d (mils) Er 20 (Degrees) o_(Napiers)
31 2.33 15.3 0.013
62 2.33 32.8 0.0141
125 2.33 64.4 0.0261
25 4.5 6.29 0.0164
50 4.5 18.5 0.0123
100 4.5 37.1 0.0166
25 6 7.6 0.0157
50 6 16.5 0.0111
100 6 34.6 0.0158
25 10.8 4.5 0.0109
75 10.8 18.2 0.0082
respectively, (2) is written as Vionded % Cros + G |14 51 : <2fw)} ©
f/ioaded = éo + éres + ,]Yc (W) . (4) ’ °
For small changes in frequency (4) simplifies using Correspondingly, three different values of “Q” may be defined
Aw=(w—-w and 2w = (w+ wo). 5 %
(=) (o) ) Quondea = 22 = e (10)
Therefore: 28w Go + Gres
2Aw wo ¢
yloaded ~ G + Gres +]Y ( w0 ) (6) Qunloaded = 2Aw — éres (11)
Equation (6) may be written in the following three forms: Qextornal = % — Ifc ) (12)
w Go
Y/’loaded ~ (éo + éres) 1 + J }C ~ <2Aw >:| (7) . . ..
(Go + Gres) \ W0 The respective values of the radian frequency deviation Aw are
V. /2Aw defined by the requirement that when (10)-(12) are substituted into
Yioaded R Go + Ghres [1 +J= ( ):| ®8)  (7)—(9), respectively, the real and imaginary components inside the
Gres square-bracketed quantities are of equal magnitudes. The values of
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the susceptance for the radian frequency deviations become

Bloaded = q:(GAo + Gres) (13)
Bunloaded = :Féres (14)
BE)(ternal = :Féo- (15)

The susceptances specified in (13) to (15), mapped onto the Smith
chart, fall on the correspondingly labeled curves shown in Fig. 3.
As seen in Fig. 3, the transformed data, coinciding with a circle of
constant conductance, intercepts each of these lines once. Since each
data point has a frequency associated with it, the values of () defined
in (10) to (12) may be determined from their frequency deviations.
The resonant frequency is taken from the data point closest to the
value of B = 0. Since the data is lying on a circle of constant
conductance, the value of Gies is determined directly. The value of
G, will depend on the input impedances of the instrumentation used
to measure the data. Appropriate use of (10)—(12) and (3) will allow
determination of L and C:

C, — (Go + Gres)Qloaded i/ — _ _ 1 (16)
wWo (Go + Gres)WOQloaded
é — GresQunloaded i = 1 (17)
wo GresonunIoaded
C\, — Gerxternal t = — 1 . (18)
wo Goonexternal

The value of L and ¢ may differ slightly depending on which
equation is used. Absolute values are obtained by dividing L by
G, and multiplying C by G,. Once the values of Gres, L, and C' are
known, all of the component values of Fig. 2 are fully determined.
Fig. 4 illustrates the final equivalent circuit characterizing the input
admittance of the microstrip antenna.

IV. APPLICATION

This procedure was used to evaluate a variety of microstrip
antennas which were fabricated having the shape of an annular
sector, Fig. 5. In Fig. 5 the inner radius “a” is given a length of
0.600 inches and the outer radius “b” a length of 1.200 inches.
These values held for all of the antennas fabricated for experimental
analysis. All of the annular sector antennas had angular spans of 90°
with p, = 0.900 inches. The dielectric material was procured from

Rogers Corporation. Four different materials were used: RT 5870
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(er = 2.33), TMM 4 (¢, = 4.5), TMM 6 (&, = 6.0), and RT 6010
(er = 10.8).

The dielectric constants for the materials, substrate thicknesses “d.”
and probe positions for the various antennas are given in Table 1.

Using the analysis outlined in this paper, measured values of Q)
were obthined for each antenna, Table II. The measured values of
Q) are in good agreement with values obtained by us using other
measurement techniques. The values of the components for the
resonant circuit were then found using data Table II and (16) to (18).
The absolute values of the circuit parameters of Fig. 4 are given in
Table III. The values of the phase shift and the attenuation are given
in Table TV.

V. CONCLUSION

This paper adapts some experimental techniques originally devel-
oped to model the admittance of cavity resonators and applies them
to microstrip antennas. The application requires a transformation
of the data to a constant conductance circle which is physically
realized using a length of transmission line and an attenuator. The
admittance calculated from the equivalent circuit was found to closely
match the measured data verifying the model within the range of
frequencies for which the various values of () were measured.
The equivalent circuit demonstrates that simple and accurate mod-
els of these antennas may be easily constructed. The equivalent
circuits can prove quite valuable when computer simulations are
required.
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